24 research outputs found

    Entropy Transformer Networks: A Learning Approach via Tangent Bundle Data Manifold

    Full text link
    This paper focuses on an accurate and fast interpolation approach for image transformation employed in the design of CNN architectures. Standard Spatial Transformer Networks (STNs) use bilinear or linear interpolation as their interpolation, with unrealistic assumptions about the underlying data distributions, which leads to poor performance under scale variations. Moreover, STNs do not preserve the norm of gradients in propagation due to their dependency on sparse neighboring pixels. To address this problem, a novel Entropy STN (ESTN) is proposed that interpolates on the data manifold distributions. In particular, random samples are generated for each pixel in association with the tangent space of the data manifold and construct a linear approximation of their intensity values with an entropy regularizer to compute the transformer parameters. A simple yet effective technique is also proposed to normalize the non-zero values of the convolution operation, to fine-tune the layers for gradients' norm-regularization during training. Experiments on challenging benchmarks show that the proposed ESTN can improve predictive accuracy over a range of computer vision tasks, including image reconstruction, and classification, while reducing the computational cost

    Salient Skin Lesion Segmentation via Dilated Scale-Wise Feature Fusion Network

    Full text link
    Skin lesion detection in dermoscopic images is essential in the accurate and early diagnosis of skin cancer by a computerized apparatus. Current skin lesion segmentation approaches show poor performance in challenging circumstances such as indistinct lesion boundaries, low contrast between the lesion and the surrounding area, or heterogeneous background that causes over/under segmentation of the skin lesion. To accurately recognize the lesion from the neighboring regions, we propose a dilated scale-wise feature fusion network based on convolution factorization. Our network is designed to simultaneously extract features at different scales which are systematically fused for better detection. The proposed model has satisfactory accuracy and efficiency. Various experiments for lesion segmentation are performed along with comparisons with the state-of-the-art models. Our proposed model consistently showcases state-of-the-art results

    Hybrid Gromov-Wasserstein Embedding for Capsule Learning

    Full text link
    Capsule networks (CapsNets) aim to parse images into a hierarchy of objects, parts, and their relations using a two-step process involving part-whole transformation and hierarchical component routing. However, this hierarchical relationship modeling is computationally expensive, which has limited the wider use of CapsNet despite its potential advantages. The current state of CapsNet models primarily focuses on comparing their performance with capsule baselines, falling short of achieving the same level of proficiency as deep CNN variants in intricate tasks. To address this limitation, we present an efficient approach for learning capsules that surpasses canonical baseline models and even demonstrates superior performance compared to high-performing convolution models. Our contribution can be outlined in two aspects: firstly, we introduce a group of subcapsules onto which an input vector is projected. Subsequently, we present the Hybrid Gromov-Wasserstein framework, which initially quantifies the dissimilarity between the input and the components modeled by the subcapsules, followed by determining their alignment degree through optimal transport. This innovative mechanism capitalizes on new insights into defining alignment between the input and subcapsules, based on the similarity of their respective component distributions. This approach enhances CapsNets' capacity to learn from intricate, high-dimensional data while retaining their interpretability and hierarchical structure. Our proposed model offers two distinct advantages: (i) its lightweight nature facilitates the application of capsules to more intricate vision tasks, including object detection; (ii) it outperforms baseline approaches in these demanding tasks

    Road Segmentation for Remote Sensing Images using Adversarial Spatial Pyramid Networks

    Full text link
    Road extraction in remote sensing images is of great importance for a wide range of applications. Because of the complex background, and high density, most of the existing methods fail to accurately extract a road network that appears correct and complete. Moreover, they suffer from either insufficient training data or high costs of manual annotation. To address these problems, we introduce a new model to apply structured domain adaption for synthetic image generation and road segmentation. We incorporate a feature pyramid network into generative adversarial networks to minimize the difference between the source and target domains. A generator is learned to produce quality synthetic images, and the discriminator attempts to distinguish them. We also propose a feature pyramid network that improves the performance of the proposed model by extracting effective features from all the layers of the network for describing different scales objects. Indeed, a novel scale-wise architecture is introduced to learn from the multi-level feature maps and improve the semantics of the features. For optimization, the model is trained by a joint reconstruction loss function, which minimizes the difference between the fake images and the real ones. A wide range of experiments on three datasets prove the superior performance of the proposed approach in terms of accuracy and efficiency. In particular, our model achieves state-of-the-art 78.86 IOU on the Massachusetts dataset with 14.89M parameters and 86.78B FLOPs, with 4x fewer FLOPs but higher accuracy (+3.47% IOU) than the top performer among state-of-the-art approaches used in the evaluation

    Distance Weighted Trans Network for Image Completion

    Full text link
    The challenge of image generation has been effectively modeled as a problem of structure priors or transformation. However, existing models have unsatisfactory performance in understanding the global input image structures because of particular inherent features (for example, local inductive prior). Recent studies have shown that self-attention is an efficient modeling technique for image completion problems. In this paper, we propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components. In our model, we leverage the strengths of both Convolutional Neural Networks (CNNs) and DWT blocks to enhance the image completion process. Specifically, CNNs are used to augment the local texture information of coarse priors and DWT blocks are used to recover certain coarse textures and coherent visual structures. Unlike current approaches that generally use CNNs to create feature maps, we use the DWT to encode global dependencies and compute distance-based weighted feature maps, which substantially minimizes the problem of visual ambiguities. Meanwhile, to better produce repeated textures, we introduce Residual Fast Fourier Convolution (Res-FFC) blocks to combine the encoder's skip features with the coarse features provided by our generator. Furthermore, a simple yet effective technique is proposed to normalize the non-zero values of convolutions, and fine-tune the network layers for regularization of the gradient norms to provide an efficient training stabiliser. Extensive quantitative and qualitative experiments on three challenging datasets demonstrate the superiority of our proposed model compared to existing approaches
    corecore